

4,6-Dimethoxy-3,7-Dimethylcoumarin from Colchicum decaisnei. Total Synthesis by Carbamoyl Baker-Venkataraman Rearrangement and Structural Revision to Isoeugenetin Methyl Ether

Alexey V. Kalinin and Victor Snieckus*

Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, ON, Canada, N2L 3G1

E-mail: snieckus@buli.uwaterloo.ca

Received 7 April 1998; revised 28 April 1998; accepted 29 April 1998

Abstract: Coumarin (1), the putative natural product isolated from Colchicum decaisnei, has been shown, by spectroscopic analysis and total synthesis, to be isoeugenetin methyl ether (2a), a synthetic derivative of the isoeugenetin (2b), isolated from Eugenia caryophyllata. © 1998 Elsevier Science Ltd. All rights reserved.

The discovery of the carbamoyl variation of the Baker-Venkataraman rearrangement as a general route to 4-hydroxycoumarins¹ invited its application to the total synthesis of coumarin natural products^{1,2} not only because of their wide occurrence and diverse biological activities, but significantly as a result of the specific advantages of the retrosynthetic analysis whose basis is the Directed *ortho* Metalation (DoM) - Negishi cross coupling protocol (Scheme 1). This tactic allows regiospecific construction of the substituted coumarin heterocycle and the instalation of the C-3 substituent in a manner which is not dependent upon C vs O alkylation.^{1,3} As a target, 4,6-dimethoxy-3,7-dimethylcoumarin (1), the unnamed natural product isolated from the tubers of *Colchicum decaisnei* whose structure was elucidated by extensive NMR analysis,⁴ was chosen. Herein we report the synthesis of 1, demonstrate that the proposed structure⁴ is incompatible with that of the synthetic material, and show, by total synthesis, that the natural product is identical to isoeugenetin methyl ether (2a), a known derivative of isoeugenitin (2b), isolated from *Eugenia caryophyllata*.⁵

Scheme 1

The synthesis of 1 (Scheme 2) was initiated by regiospecific electrophilic bromination of the aryl carbamate 3 with NBS followed by Pd-catalyzed Negishi cross-coupling⁶ with MeZnCl to furnish the tolyl carbamate 5.7 Lithiation-zinc transmetalation of 5 followed by cross coupling with propionyl chloride resulted in the formation of a mixture of 6 and 7 in a 7:93 ratio. Although inseparable by column chromatography, the mixture was subjected to crystallization (hexanes/-20°C) to cleanly produce 7 in 76% yield.⁸ The regioselectivity was expected on the basis of *meta*-methyl group effect in DoM reactions.⁹ The carbamoyl Baker-Venkataraman rearrangement of 7 using NaH in refluxing toluene followed by TFA cyclization in one-pot reaction¹ proceeded smoothly to give coumarin 8 in excellent yield. Methylation under reported conditions,^{3b} except in non-toxic DMPU rather than HMPA, concluded the synthesis of 1 in five steps and 28% overall yield, illustrating the efficiency of the new general 4-hydroxycoumarin construction method.¹

Scheme 2

Examination of the spectral data, ¹⁰ especially the IR and NMR spectra, of synthetic 1 showed vast discrepencies with those reported⁴ for the natural product isolated from *C. decaisnei* which was assigned the same structure. Analysis of the reported⁴ NOE data and a characteristic difference in ¹H NMR of chemical shifts of vinylic proton in 2- and 3-methyl substituted chromen-4-ones¹¹ led to the proposal of an alternate chromen-4-one structure 2a. Interestingly, compound 2a had been previously synthesized to confirm the structure of isoeugenitin (2b), isolated from *Eugenia caryophyllata*. ^{5a} The lack of reported spectroscopic data for 2a forced the repetition of its synthesis according to Schmid and Bolleter ^{5b} by Claisen condensation of the acetophenone 9¹² to give 10 followed by acid-catalyzed cyclization (Scheme 3). The spectroscopic data (IR, ¹³C, ¹H NMR, MS)¹³ of synthetic 2a was in full agreement with that reported⁴ for the natural product isolated from *C. decaisnei* whose structure is duly revised from 1 to 2a.

Scheme 3

In summary, the new synthetic protocol consisting of sequential Directed *ortho* Metalation, Negishi cross coupling, and carbamoyl Baker-Venkataraman reactions¹ has been applied to an efficient construction of 4,6-dimethoxy-3,7-dimethylcoumarin (1), a structure assigned⁴ to a compound isolated from *Colchicum decaisnei*. The achievement of this unequivocal synthesis coupled with spectral data comparison led to the reassignment of structure 1 to 2a, isoeugenetin methyl ether, a known derivative of isoeugenetin (2b)⁵ isolated from *Eugenia caryophyllata*.^{5a} This was confirmed by synthesis of 2a. Thus, compound 1 is, to the best of our knowledge, not a natural product.¹⁴

Acknowledgment. We are grateful to NSERC Canada and Monsanto for support of our synthetic efforts under the Monsanto/NSERC Industrial Research Chair and Research Grant programs. AVK is a NATO Science Fellow. C. Kendall and C. James are warmly thanked for intellectual contributions to the structural elucidation of 2a.

References and Footnotes:

- 1. Kalinin, A. V.; da Silva A. J. M.; Lopes, C. C.; Lopes, R. S. C.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4995-4998.
- 2. Estevez-Braun, A.; Gonzalez, A. G. Nat. Prod. Repts. 1997, 14, 465-475.
- a) Tabakovic, I.; Tabakovic, K.; Gaon, I. *Org. Prep. Proc. Int.* 1997, 29, 223-226 and refs cited therein; b) Suzuki, E.; Katsuragawa, B.; Inoue, S. *Synthesis* 1978, 144-146 and refs cited therein; c) Bohlmann, F.; Steinmeyer, A. *Tetrahedron Lett.* 1986, 27, 5359-5362.
- 4. Al-Tel, T. H.; Zarga, M. H. A.; Sabri, S. S.; Feroz, M.; Fatima, N.; Shah, Z.; Atta-ur-Rahman *Phytochemistry* **1991**, *30*, 3081-3086.
- 5. a) Schmid, H.; Bolleter, A. Helv. Chim. Acta 1949, 32, 1358-1360; b) Schmid, H.; Bolleter, A. Helv. Chim. Acta 1950, 33, 917-922.
- 6. Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117-2188; Erdik, E. Tetrahedron 1992, 48, 9577-9648.
- 7. This route was chosen in lieu of a classical synthesis of the phenol corresponding to 5 by a terminal Baeyer-Villiger oxidation (see, Rathore, R.; Kochi, J. K. J. Org. Chem. 1995, 60, 7479-7490) in order to provide greater scope for substituent variation in the overall methodology for coumarins. Furthermore, experiments of metal-halogen exchange (n-BuLi/-78°C) and MeI or MeOTf quench on 4 led to complex mixtures containing minor amounts of 5.
- 8. Typical Procedure for DoM Negishi Cross Coupling Reaction: To a cooled (-78°C) solution of 5 (1.187 g, 5 mmol) in THF (10 mL) was added s-BuLi (4.5 mL, 6 mmol, 1.34 M cyclohexane solution) maintaining the internal temperature <-72 °C. After stirring for 1 h at 78 °C, ZnCl₂ (6.2 mL, 1 M THF solution) was added in the same manner and, in 30 min, the reaction mixture was brought to 0 °C followed by addition of C₂H₅COCl (0.61 mL, 7 mmol) and a solution of Pd-catalyst

[prepared by addition of DIBALH (0.5 ml, 1 M solution in hexane) to a stirred suspension PdCl₂(PPh₃)₂ (176 mg, 0.25 mmol) in 5 mL of PhMe at 0 °C with further stirring for 15 min at 0 °C and 15 min at rt]. The reaction mixture was stirred for 30 min at 0 °C and 2 h at rt, before 25 mL of sat NH₄Cl solution was added. The organic phase was separated, the aq phase was extracted with Et₂O (2 x 20 mL), the combined organic extract was filtered through Celite, the filtrate was concentrated in vacuum, and the residue was diluted with Et₂O, dried (Na₂SO₄), and purified by column chromatography on silica gel (EtOAc-hexanes, 1:4) providing 1.36 g (4.62 mmol, 92% yield) of a 93:7 mixture of 7 and 6, which was dissolved in hexanes (20 mL) and cooled to -20 °C resulting in crystallization of 7 (1.12 g, 3.80 mmol, 76% yield) as colorless needles, mp 67-68 °C; IR (KBr) 1716, 1684 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 7.19 (s, 1H), 6.88 (s, 1H), 3.85 (s, 3H), 3.53-3.35 (m, 4H), 2.88 (q, 2H, J = 7.3 Hz), 2.23 (s, 3H), 1.30-1.13 (m, 9H); ¹³C NMR (62.9 MHZ, CDCl₃) δ 200.5, 154.9, 154.1, 143.3, 132.5, 129.7, 125.7, 109.9, 55.7, 42.2, 41.8, 35.1, 16.1, 14.1, 13.3, 8.2; EI MS m/z (rel intensity) 293 (M, 25), 264 (2), 237 (4), 165 (10), 135 (3), 101 (9), 100 (100); EI HRMS Calcd for C₁₆H₂₃NO₄: 293.1627. Found 293.1619. Coumpound 6: ¹H NMR (250 MHz, CDCl₃) δ 6.98 (d, 1H, J = 8.6 Hz), 6.81 (d, 1H, J = 8.6 Hz), 3.82 (s, 3H), 3.56-3.30 (m, 4H), 2.71 (q, 2H, J = 7.2 Hz), 2.07 (s, 3H), 1.30-1.05 (m, 9H).

- 9. Snieckus, V. Chem. Rev. 1990, 90, 879-933.
- 10. Compound 1: colorless needles, mp 141-142 C (EtOAc-hexanes); IR (KBr) 1704, 1634, 1620, 1575, 1331, 1257, 1202 cm⁻¹; ¹H NMR (250MHz, CDCl₃) δ 7.13 (s, 1H), 7.00 (s, 1H), 4.00 (s, 3H), 3.89 (s, 3H), 2.30 (s, 3H), 2.17 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃) δ 164.6, 163.7, 154.5, 146.6, 132.1, 118.4, 115.3, 111.3, 101.9, 61.0, 55.8, 16.6, 10.7; EI MS *m/z* (rel intensity) 234 (M, 100), 219 (46), 206 (17), 205 (15), 191 (69), 175 (14), 91 (28), 77 (27), 65 (19), 63 (19). Anal. Calcd for C₁₃H₁₄O₄: C, 66.65; H, 6.02. Found: C, 66.49; H, 6.10.
- 11. Eguchi, S. Org. Mass Spectrom. 1979, 14, 345-349.
- 12. Tada, A.; Saiton, T.; Shoji, J. Chem. Pharm. Bull. 1980, 28, 2487-2493.
- Isoeugenetin methyl ether (2a): yellowish needles, mp 173-174°C (benzene-hexanes) [lit^{5b} mp 173.5-174.5°C]; IR (KBr) 1661, 1628, 1602, 1388, 1323, 1131, 841 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 6.38 (s, 1H), 6.00 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 2.30 (s, 3H), 2.18 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃) δ 177.6, 162.6, 160.7, 158.5, 156.5, 110.9, 108.0, 105.3, 91.1, 56.0, 55.4, 19.4, 7.3; EI MS *m/z* (rel intensity) 234 (100), 233 (40), 205 (68), 188 (56), 161 (51), 149 (13), 103 (17), 69 (47); EI HRMS Calcd for C₁₃H₁₄O₄: 234.0892. Found 234.0888.
- 14. All new compounds show analytical and spectra (IR, NMR, HRMS) data consistent with the given structures.